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Summary 
A study of plane-acoustic-wave propagation in small tubes 

with a cross section in the shape of a flattened oval is described. 
To begin, theoretical descriptions of a plane wave propagating 
in a tube with circular cross section and between a pair of 
infinite parallel plates, including viscous and thermal damping, 
are expressed in similar form. For a wide range of useful duct 
sizes, the propagation constant (whose real and imaginary parts 
are the amplitude attenuation rate and the wave number, 
respectively) is very nearly the same function of frequency 
for both cases if the radius of the circular tube is the same 
as the distance between the parallel plates. This suggests that 
either a circular-cross-section model or a flat-plate model can 
be used to calculate wave propagation in flat-oval tubing, or 
any other shape tubing, if its size is expressed in terms of an 
equivalent radius, given by g = 2 x (cross-sectional area)/ 
(length of perimeter). Measurements of the frequency response 
of two sections of flat-oval tubing agree with calculations based 
on this idea. Flat-plate formulas are derived, the use of 
transmission-line matrices for calculations of plane waves in 
Compound systems of ducts is described, and examples of com- 
puter programs written to carry out the calculations are shown. 

Introduction 
“The problem of the propagation of sound waves in gases 

contained in cylindrical tubes is a classical one, to which 
famous names are connected like Helmholtz, Kirchhoff, and 
Rayleigh. Since then many papers have been written on the 
subject, often in relation to studies dealing with the dynamic 
responses of pressure transmission lines.” So states H. 
Tijdeman, referring to 34 previous papers in the first paragraph 
of one of his reports on the subject (ref. 1). (See also refs. 
2 and 3.) 

Much less has been written about the propagation of sound 
waves in ducts of noncircular cross section, however, 
particularly for propagation in narrow tubes, where viscous 
and thermal losses at the walls are significant. It was the goal 
of this study to develop an analytical framework for calculating 
the pressure-transfer properties of the flat-oval tubing shown 
in cross section in figure 1, so that its behavior could be 
predicted when it is used as probe tubing for a pressure 

transducer. The hope was that results could be cast in a form 
similar to the recursion relation of Bergh and Tijdeman (ref. 
4), which has been used to analyze pressure probes of circular 
cross section (ref. 5) .  This recursion relation is obtained in 
a slightly more general form in this report (appendix C). 

However, in the section Solving Fluid Equations for 
Noncircular Tubing, it is argued that a Bergh and Tijdeman 
type recursion relation cannot be found for tubing of 
noncircular cross section for a viscous, thermally conducting 
gas. That is to say, the fundamental differential equations 
describing the behavior of a fluid in a duct cannot be solved 
in closed form to the same degree of approximation used for 
the Bergh and Tijdeman analysis in any coordinate system 
other than circular cylindrical. 

The solution for a plane wave propagating between two 
infinite parallel plates can be found, however, and the section 
Comparison With Flat-Plate Geometry is concerned with a 
comparison of the circular-tube and parallel-plate results. Over 
a useful range of tubing sizes and frequencies, the two solutions 
are remarkably similar if a generalized radius g = 2 x (area 
of cross section)/(length of perimeter of cross section) is 
properly used to characterize the size of the waveguides. Thus, 
within the range where the solutions are similar, either should 
give a close approximation to the acoustical properties of flat- 
oval tubing, described by its generalized radius. This con- 
clusion applies also to tubing with other cross-sectional shapes 
as well. 

The pressure-transfer properties of short sections of flat- 
oval tubing were measured, and the results are presented in 
the section Measurements on Flat-Oval Tubing. The theoretical 
predictions agree very well with the measurements. Limits to 
this technique for calculating the pressure-transfer properties 
of noncircular tubing are suggested in the section Concluding 
Remarks. 

Four appendixes conclude the report. A list of symbols used 
in the equations is given as appendix A. Appendix B gives 
details of the solution for plane waves propagating between 
infinite parallel plates. Appendix C describes the use of 
transmission-line matrices for calculating the acoustical 
properties of systems of tubing. (This method is equivalent 
to but more straightforward and powerful than the Bergh and 
Tijdeman recursion relation.) Listings of several computer 
programs written to implement the transmission-line 
calculations are presented and explained in appendix D, with 
several numerical examples for reference. 
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Figure 1 .-Cross section of flat-oval tubing investigated. 

Solving Fluid Equations for 
Noncircular Tubing 

There are four basic equations describing the properties of 
a viscous gas with a finite thermal conductivity. These four 
equations are the following: 

The force equation, which includes viscosity, is the Navier- 
Stokes equation (refs. 6 and 7), which may be written 

1 1 
Vp‘ + p (V V)u’ + -V(V .U’) (1) I 3 

Du’ 
p’Dt=-  

In this equation, which is a vector equation having three 
components, p ‘  is the fluid density, u ’  is the fluid velocity, 
p’ is the absolute pressure, and p is the constant shear viscosity 
coefficient. The Stokes assumption that the bulk (or volume) 
viscosity is zero has been made, and the differential operator 

In curvilinear coordinates, the scalar operator V V can be 
evaluated by using the identity 

(V  V)u’ = V(V *U’) - VX(VX u’) (3) 

The equation of continuity of the fluid (or conservation of 
mass) may be written (ref. 8, p. 8, p. 512) 

(4) 

The thermodynamic properties of the gas are assumed to 
be described by the ideal gas equation of state 

and an energy equation describing heat conduction (refs. 9 and 
10) 

DT’ Dp’ 
Dt Dt 

p’cp- - - - AV2T‘ = 0 

Here T‘ is absolute temperature, e,, is the specific heat at 
constant pressure, and A is the thermal conductivity of the 
fluid; a second-order term describing heat transfer due to 
internal friction has been neglected (see refs. 1 and 4). 

When written in cylindrical coordinates, equations (l), (4), 
(3, and (6) form the starting point for the analysis in the 
appendixes of references 1 and 4, where it is assumed from 
symmetry that there is no azimuthal velocity. The solutions 
for the circular tube proceed by setting 

where j = m, and pa, pa, and T, are constants represent- 
ing the ambient or average values of pressure, density, and 
temperature. As usual, the position-dependent disturbance 
amplitudes p ,  p ,  and Tare assumed to be small compared to 
the ambient values. Similarly, the magnitude of the fluid 
velocity amplitude u is assumed small compared to c, the free- 
space adiabatic phase velocity of sound given by e=- 
where y is the ratio of specific heats y = c,Ic,. In addition, 
it is assumed that (1) the internal tube radius r is small 
compared to the free-space wavelength (wrIc << l), (2) the 
radial velocity component is smaller than the axial velocity 
by about this same factor, and (3) the flow is laminar 
throughout the system. (Laminar flow is interpreted to mean 
that differentiation with respect to the axial coordinate yields 
a quantity of the same order as does dividing by the free-space 
wavelength; differentiation with respect to the radial coordinate 
gives a result of the same order as does dividing by t.) Under 
these assumptions, closed-form solutions to these equations 
in cylindrical coordinates are obtained in references 1 and 4. 

For purposes of this investigation, it is natural to consider 
solving the basic equations to the same degree of approxi- 
mation in other coordinate systems. The difficulty encountered 
in such attempts may be illustrated by using rectangular 
coordinates as an example. 

Choose the x-axis to lie along the center axis of a long tube 
with rectangular cross section, with the y- and z-axes 
perpendicular to the duct walls. Denote the x-component of 
the harmonic amplitude of the fluid velocity by u, the y- 
component by v, and the z-component by w. Writing the basic 
equations (l), (4), (5), and (6) in rectangular coordinates, 
substituting equations (7), and retaining only the most 
significant terms in each equation (as in the circular tube case) 
yield the following six equations: 
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o = - -  aP 
az 

P = <(P C - P A T )  

These are similar to equations (6) through (10) in the 
appendix of reference 4 or equations (Bl) through (B5) of 
reference 1, except that they contain two independent co- 
ordinates or components perpendicular to the tube axis instead 
of one. 

To this approximation as in the circular case, equations (9a) 
and (9b), which are the two transverse components of the 
Navier-Stokes equation, directly imply that the pressure waves 
are plane waves. The planes of constant pressure coincide with 
planes of constant x .  However, the rectangular case differs 
from the circular case because it has less symmetry. 

The rectangular case has two independent transverse 
components of fluid velocity, denoted by v and w, whereas 
by symmetry the circular case has only one transverse velocity, 
the radial velocity. In order to solve the problem, then, we 
need one more equation in the rectangular case than in the 
circular geometry to determine an additional unknown. This 
additional equation is the third component of the Navier-Stokes 
equation given in equation (9), but unfortunately it provides 
no information about v or w.  The two transverse velocities 
appear only together in equation (10) with no additional 
relation which can be used to separate them. In addition, if 
one tries to solve equation (12) for temperature fluctuations, 
one finds that with both y- and z-derivatives present the 
separation of variables procedure is not successful. 

Thus, the equations do not appear solvable to this 
approximation in rectangular coordinates. Furthermore, we 
would expect the same difficulty in any other coordinate system 
lacking circular symmetry and thus having two independent 
transverse velocity components, if we seek a plane wave in 
pressure. In spite of the Bessel functions which appear, the 
circular geometry is fundamentally the simplest case to 
consider and is the only shape duct for which a closed solution 
is possible. 

Comparison with Flat-Plate Geometry 
As mentioned by Lord Rayleigh, another effectively two- 

dimensional case which can be solved, in addition to the 
circular duct, is a plane wave propagating between a pair of 
infinite parallel plates (ref. 11). A solution for that case is 
derived in appendix B, and the results may be summarized 
as follows: If a plane pressure wave propagates in the x- 
direction between a pair of isothermal, rigid, infinite planes 
located at y= f h/2, the x-dependent amplitude of the pressure 
disturbance at frequency w is 

Here, A and B are complex constants determined by boundary 
conditions, and the complex propagation constant cp is 

In this expression, 

and Pr is the Prandtl number. (See appendix B.) At any 
particular x ,  the average amplitude of the longitudinal fluid 
velocity is 

cp 

J W a  
E(x) = - F(a)  (.evx - 

Interestingly enough these expressions are of precisely the 
same form as the corresponding quantities in the circular duct 
solution, as found in equations (29), (30), and (42) in the 
appendix of Bergh and Tijdeman (ref. 4). The only difference 
is that for the infinite-flat-plate geometry the function F has 
replaced the Bessel function ratio J2/J0 appearing in the 
circular-tube case. The arguments of the respective functions 
are the same if one chooses the spacing h between the plates 
equal to the radius r of the circular tube. 

Not only are the overall expressions of the same form, but, 
for equal arguments of the type used in these equations, the 
magnitude and phase of the function F are actually quite similar 
to the corresponding quantities for the Bessel function ratio. 
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If both are evaluated for an argument written as 
where s is real (this is the particular form of a), then 

= j3'2s, 

For large arguments, both have the limiting value - 1, so that 
for very wide conduits, very high frequencies, high ambient 
pressure, or vanishing viscosity and thermal conductivity the 
propagation constant becomes jwlc.  Between the extreme 
limits, the magnitudes and phases of the two quantities are 
plotted in figures 2 and 3. There it can be seen that the two 
quantities are not identical, but are surprisingly similar. To 
indicate the frequency range in which the important variation 
of these two functions occurs in the system of interest, figures 
2 and 3 show the values of s appropriate for 100 and 329 Hz 
if s = h a  for air at atmospheric pressure and 300 "C 
and h = 0.061 cm. 

Quantities that are calculated by using these two similar 
functions are also very much alike. Graphs of the real and 
imaginary parts of the propagation constant cp as a function 
of frequency are shown in figures 4 through 6, for several 
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Figure 2.-Comparison of magnitudes of J2 ( n / J o (  0 and [(tan {/2)/({/2)] - 1 
as function of real parameter s, where { = j312s. 
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Figure 3.-Comparison of phases of J2 ( O/Jo (0  and [(tan {/2)/({/2)] - 1 as 
function of real parameter s, where { = j3%. 

values of r = h, given in centimeters. The imaginary part of 
cp is the wave number, inversely proportional to the phase 
velocity of the wave in the conduit. It is the primary quantity 
determining the resonant frequencies of standing waves in a 
tube. The real part of cp is the factor giving the amplitude 
attenuation rate with distance. In figures 4 through 6, the solid 
straight line is the wave number for an ideal, inviscid gas, 
the dashed lines ending in a circle are computed by using the 
circular-tube expressions, and the dashed lines ending in a 
square show the infinite-flat-plate values. The most noticeable 
difference between the circular-tube and flat-plate propagation 
constants is that for the smallest tubing the flat-plate geometry 
has a larger attenuation factor, or greater viscous and thermal 
damping, than the circular case. But the smallest case shown 
has such large damping that tubing of that size would not be 
useful for pressure-transmission purposes. The intermediate 
pair of graphs turns out to show the propagation constant 
appropriate for the flat-oval tubing of interest, and there the 
flat-plate damping is only slightly greater than the circular- 
tube damping. 

For the particular case of infinite flat plates, figures 4 
through 6 illustrate the assertion that theoretical expressions 
derived for waves propagating in a circular tube may be 
adapted to describe the properties of waves in ducts of arbitrary 
cross-sectional shape. This may be done by simply replacing 
r ,  the radius of the circular tube, by a generalized quantity 
calculated as 

g = 2 x (cross-sectional area of duct)/(length of 
perimeter of cross section) (22) 

wherever r appears in the equations (refs. 12 through 14). For 
a circular tube, g = r ,  while in the limit that the width of a 
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(b) Attenuation factor for circular-cross-section tube with radius of 1.0 cm, 
and wave between flat plates separated by 1.0 cm. 

Figure 4.-Wave number and attenuation factor, imaginary and real parts, 
respectively, of propagation constant of equations (13) and (14) as functions 
of frequency. 

rectangular duct becomes infinite, g = h. The assertion seems 
true at least in that p(x)  and @(x) are very nearly the same 
function of g, frequency, and gas properties for waves 
propagating both in a circular duct and between infinite parallel 
plates over a wide range of sizes. It would be reasonable to 
expect p(x) and P(x) to depend in the same way on the same 
parameters in flat-oval tubing or tubing of other cross-sectional 
shapes as well. 
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(a) Wave number for circular-cross-section tube with radius of 0.060 cm, 
wave between flat plates separated by 0.060 cm, and plane wave without 
thermal or viscous damping. 

(b) Attenuation factor for circular-cross-section tube with radius of 0.060 cm, 
and wave between flat plates separated by 0.060 cm. 

Figure 5.-Wave number and attenuation factor, imaginary and real parts, 
respectively, of propagation constant of equations (13) and (14) as functions 
of frequency. 

Shown in figure 7 are rough sketches of circular, flat-oval, 
and infinite-plate waveguides drawn with the same value of 
g. The pressure and average-velocity waves in these three 
systems, then, are described by almost the same expressions. 
The properties of systems made up of tubing with any cross- 
sectional shape should be calculable with a recursion relation 
like that of Bergh and Tijdeman (ref. 4) or equivalent 
transmission-line formulas (see appendix C ) ,  where in most 
places r is replaced by the appropriate g. 

However, care must be exercised, for not all such 
replacements would be correct. The exceptions occur in 
expressions for the characteristic impedance of a tube found 
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(a) Wave number for circular-cross-section tube with radius of 0.010 cm, 
wave between flat plates separated by 0.010 cm, and plane wave without 
thermal or viscous damping. 

(b) Attenuation factor for circular-cross-section tube with radius of 0.010 cm, 
and wave between flat plates separated by 0.010 cm. 

Figure 6.-Wave number and attenuation factor, imaginary and real parts, 
respectively, of propagation constant of equations (13) and (14) as functions 
of frequency. 

from equations (ClO), (C12), and (C19) or the V, tube 
volume factors in the Bergh and Tijdeman recursion relation 
given here as equation (C57), where essentially the cross- 
sectional area S of the tube enters as a result of requiring 
conservation of mass flowing through the tube. The mass per 
unit time passing point x is given by 

n 

Figure 7.-Cross-sectional shapes of circular, flat-oval, and infinite-parallel- 
plate ducts, all having same size generalized or equivalent radius. 

0.61 r for an unflanged opening), replace r by &% for a 
noncircular tube (ref. 8, pp. 348-350). 

Measurements on Flat-Oval Tubing 
In order to evaluate the applicability of the circular-tube 

and/or flat-plate expressions to the case of flat-oval tubing, 
two samples of such tubing were mounted on the resonator 
chamber of the large Galton whistle sound source shown in 
figure 8 and described in reference 15. Silicon strain-gauge 
pressure transducers were used to measure the pressure in the 
whistle and in a small cavity at the end of the tubing. The 
geometrical length of one sample was 5.08 cm and of the other 

,- Piston cable , 
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- Movable tuning 

Simulated probe 

, 
Reference pressure /' piston 
transducer -, 

\ 
I ,' '\ 

Pressure transducer 

0 

0 
H 
2.54 cm 

dm 
- = p,Sii(x) 
dt 

Nozzle 7, . 
In adapting this requirement to tubing of different shape, even 
if S is expressed as rr2,  set S equal to the actual cross- 
sectional area of the new tube, rather than changing r to g. 
Similarly, when calculating an appropriate end correction to 
the geometrical length of a tube (0.82 r for flanged tubing or 

I- Supply pressure 

Figure %-Galton whistle sound source for testing frequency response of flat- 
oval probe microphone tubing. 
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was 7.62 cm, while the cavity volumes were 0.01325 and 
0.01630 cm3, respectively. The cross-sectional area of the 
tubing was 0.01714 cm’, and the length of the perimeter was 
0.571 cm. Thus, g = 0.060. When the expected pressure- 
transfer properties of the tubing were calculated, an end 
correction of 0.07 cm was added to the geometrical length of 
each tube. 

The magnitudes of the pressure disturbance amplitudes were 
measured by using two Princeton Applied Research model 126 
lockin amplifiers operated as ac voltmeters, and the ratio of 
the end-cavity pressure amplitude to the whistle pressure 
amplitude was plotted as a function of frequency. The relative 
phase of the two signals was also measured with one of the 
lockin amplifiers. Care was taken to subtract the phase shift 
in the signal channel input filter of the amplifier at each 
frequency. 

The experimental data are shown as crosses superimposed 
on theoretical predictions in figures 9 (shorter tube) and 10 

e-+ Circular-cross-section- 
tube model 

&---E3 Infinite-flat-plate model + Experimental measurements 
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(a) Ratio of amplitude of transducer cavity pressure to amplitude of whistle 

(b) Relative phase of transducer cavity pressure and whistle pressure at probe 

Figure 9.-Ratio of cavity to whistle pressure amplitude and relative phase 
of two signals as functions of frequency for flat-oval tubing of geometrical 
length 5.08 cm and equivalent radius g = 0.060. 

pressure at probe tube inlet. 

tube inlet. 
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Figure 10.-Ratio of cavity to whistle pressure amplitude and relative phase 
of two signals as functions of frequency for flat-oval tubing of geometrical 
length 7.62 cm and equivalent radius g = 0.060. 

pressure at probe tube inlet. 

tube inlet. 

(longer tube). The lengths of the bars on the crosses in these 
figures do not signify experimental uncertainty. There are, in 
principle, two theoretical curves on each graph, one from the 
circular tube formulas and one for infinite flat plates, both 
evaluated for g = 0.060 cm. The two curves are essentially 
the same, however, except near the peaks in the pressure- 
amplitude ratios. There the slightly greater damping in the flat- 
plate case leads to a slightly lower peak. The relative phase 
curves are totally indistinguishable. 

The agreement between the experimental data and the 
theoretical curves is excellent. Since figure 7 suggests that the 
flat-oval tubing may resemble a pair of flat plates more than 
a circular tube, one might expect the experimental points to 
lie closer to the curves of the flat-plate model than those of 
the circular one. In fact they do, but the possibility of slight 
extra, uncontrolled damping or air leakage in the apparatus 
implies that such fine distinctions would be hard to defend. 

Concluding Remarks 
Very satisfactory predictions of the acoustical properties of 

pressure-transmission systems incorporating flat-oval tubing 

7 



2.50 

.P 2.00 
c m 
L 

a, v 3 
c .- - 

1.50 
m 
0) L 

3 
w7 
v) m 

a' 1. 00 

.50 

0--4 Circular-cross-section-tube model 
m--0 Infinite-flat-plate model 

loo0 m 3ooo m 5000 
Frequency, Hz 

Figure 1 1  .-Calculated magnitude of ratio of transducer cavity pressure to 
pressure at probe tube inlet as a function of frequency for flat-oval tubing 
of length 7.7 cm and equivalent radius g = 0.020 cm. 

with an equivalent radius g = 0.060 cm can be made by using 
equations derived either for circular tubes or a pair of infinite 
flat plates. This result was anticipated from the surprising 
similarity of the theoretically calculated propagation constants 
for waves in circular tubes and waves between flat plates, if 
both types of ducts possess the same equivalent radius as 
defined in equation (22). Experimental measurements of the 
pressure-transfer properties of samples of flat-oval tubing with 
g = 0.060 over a frequency range from 500 to 3500 Hz agreed 
very well with the theoretical calculations, confirming the 
applicability of the theoretical models investigated. 

Further calculations show, however, that for only somewhat 
smaller values of g the greater damping in the flat-plate model 
leads to significant differences between the flat-plate and 
circular-tube predictions. Figures 11 and 12 display predicted 
pressure-amplitude ratios for 7.7-cm lengths of tubing with 
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Figure 12.-Calculated magnitude of ratio of transducer cavity pressure to 
pressure at probe tube inlet as a function of frequency for flat-oval tubing 
of length 7.7 cm and equivalent radius g = 0.010 cm. 

g = 0.020 and 0.010 cm, respectively. The damping is higher, 
and predictions from the two models are significantly different. 
This suggests a lower bound of about g = 0.040 cm, below 
which circular-tube properties may no longer be adapted with 
confidence to tubing of other cross-sectional shapes with the 
equivalent radius formalism. Further experiments would be 
required to determine if either of the models considered here 
gives a good representation of very small flat-oval tubing. 

National Aeronautics and Space Administration 
Lewis Research Center 
Cleveland, Ohio, March 13, 1986 



Appendix A 
Symbols 

complex constants of integration (eq. (13)) 
complex constants of integration (eq. (B13)) 
capacitance per unit length of transmission line 

adiabatic phase velocity of sound (eq. (11)) 
specific heat at constant pressure (eq. (6)) 
specific heat at constant volume 
differential operator (eq. (2)) 
geometry-dependent function for flat plates (eq. 
(16)) or ratio of Bessel functions for circular tube 

arbitrary function of integration (eq. (B27)) 
function for separation of variables (eq. (B10)) 
shunt leakage conductance per unit length of 
transmission line (eq. (C2) 
equivalent radius (generalized radius) (eq. (22)) 
distance separating parallel plates (eq. (17)) 
position-dependent harmonic amplitude of i (eq. 
(C4)) 
electric current in transmission line (eq. (C6)) 
integer-order Bessel function of first kind (eq. 
(19)) 
imaginary unit 
complex constant of integration (eq. (B1 1)) 
polytropic constant for cavity (eq. (C39)) 
length of section of tube or duct (eq. (C23)) 
inductance per unit length of transmission line 

subscript labeling tube section (eq. (C46)) 
mass of parcel of gas (eq. (23)) 
complex effective polytropic factor for tube (eq. 
(B3 1 )) 
Prandtl number (eq. (B6)) 
position-dependent harmonic amplitude of excess 
pressure (eq. (7)) 
average absolute pressure (eq. (7)) 
absolute pressure (eq. (1)) 
function for separation of variables (eq. (B10)) 
electric charge (eq. (Cl)) 
electric resistance 
ideal gas constant (eq. (5)) 

(eq. (C1)) 

(eq. (CW) 

(eq. 0 ) )  

electric resistance per unit length of transmission 
line (eq. (C6)) 
inside radius of tube with circular cross section 
cross-sectional area of tube (eq. (23)) 
general real parameter (eq. (19)) 
position-dependent harmonic amplitude of 
temperature variations (eq. (7)) 
average or ambient absolute temperature (eq. (7)) 
absolute temperature (eq. (5)) 
time (eq. (7)) 
harmonic volume velocity amplitude (flow 
amplitude) (eq. (C8)) 
axial component of u (eq. (8)) 
average value of u over cross section of tube (eq. 
(18)) 
position-dependent harmonic amplitude of fluid 
velocity (eq. (7)) 
fluid velocity (eq. (1)) 
position-dependent harmonic amplitude of V' (eq. 
(C4)) 
volume of cavity (eq. (C39)) 
volume of tube section (eq. (C56)) 
electric potential difference (eq. (Cl)) 
transverse rectangular components of u (eq. (10)) 
axial rectangular coordinate (eq. (8)) 
total shunt electric or acoustic admittance per unit 
length (eqs. (C5) and (C12)) 
transverse rectangular coordinates (eq. (8)) 
acoustic impedance of tube at x (eq. (C17)) 
characteristic impedance of tube (eq. (C19)) 
acoustic input impedance of tube (eq. (C32)) 
acoustic terminating impedance of tube (eq. 
(C33)) 
total series electric or acoustic impedance per 
unit length (eqs. (C7) and (C10)) 
dimensionless scaled transverse coordinate (eqs. 
(B8) and (B20)) 
shear wave number (eq. (B7)) 
ratio of specific heats, c,,lcv (eq. (11)) 
general complex argument of function (eq. (16)) 
thermal conductivity (eq. (6)) 
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P coefficient of shear viscosity (eq. (1)) p ’ absolute fluid density (eq. (1)) 
P position-dependent harmonic amplitude of density u diaphragm deflection factor (eq. (C39)) 

variations (eq. (7)) (P complex propagation constant (eq. (13)) 
Pa average fluid density (eq. (7)) 0 angular frequency (eq. (7)) 
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Appendix B 
Plane Waves Propagating Between Infinite Planes 

Consider a rectangular coordinate system with two infinite 
rigid plates located at y = f h/2. Suppose a wave propagates 
in the space between them, and choose the x-axis to point in 
the direction of propagation. The linearized equations de- 
scribing the gas are those given as equations (8) through (12) 
in the section Solving Fluid Equations for Noncircular Tubing, 
except that since any Z-location is equivalent to any other, the 
z-derivative terms and hence the z-component fluid velocity 
amplitude w disappear from the equations. Thus we seek to 
find the small deviations from equilbrium by solving 

This may be solved by separation of variables. Let 

T(x* z )  = f ( x ) q ( z )  

Substituting this into equation (B9) yields 

with the conclusions 

aP 
aY 

o =  -- 
and 

q(z) = C1 sin z + C2 cos z + K (B13) jwp = - p a  - + - (:: :;) 
If the plates are isothermal, so that the temperature fluctations 
vanish at the walls, the two Soundaiy con&*' lrions are 

a2T 

aY 
j q a c p T  = X 7 + jwp 035) T = O  

h 
y =  f- 

2 

for 

or 

We start with equation (B5). When the Prandtl number 
which relates viscous and thermal effects is defined as 

q = o  
the shear wave number as 

for 

aJpr 
z =  *- 

2 

Thus we find that in equation (B13) and a new dimensionless variable z as 

K 
c,=o c,=- (B16) 

cos (F) 
yielding 

equation (B5) may be written as 

a2T p 
T + 7 = -  

11 



Notice that at any particular x, the average longitudinal fluid 
velocity is 

h/2 

i h / 2  
U(x) = - U(X9Y)dY 

In terms of the original variables, this is 

dp 
dr 

- 1  

/ ( x , y ) = 1 1 -  cos (+) ]m 
cos (T> pacp 

The quantity in square brackets appears in several expressions, 
and it is given a special function notation: 

Inserting the result of equation (B18) in equation (B4) and 
using the fact that cp - c, = &, we find 

Finally we look at the equation of continuity, equation (B3), 
which may be written 

.['- Inserting equation (B19) for p into equation (B25) and equation 
(B22) for u, we get 

Next, the Navier-Stokes equation, equation (Bl), may be 
solved by separation of variables as was the energy equation. 
If we let 

Y z = a  - 
h 

cos r*)- 
equation (Bl) becomes 

I 

cos C?) 
Letting u(x,z) =f(x)q(z) and requiring that u vanish at the 
plates because of viscous drag, we find - cos rf) 

cos (;) -'1* dr 

cos (y)  
t [ cos 6) If we then integrate with respect to y, the result is 
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X 

- [: sin cos (y)  (;) - y ] 3 + F 1 ( x )  

At the rigid plates, v, the transverse component of the fluid 
velocity, must vanish. Setting equation (B27) equal to zero 
first at y = +h/2 and then at y = -hi2 and adding the two 
results show that Fl (x) = 0. Subtracting one equation from 
the other and cancelling h give 

F(cx)---Y d2p dr2 u2 c2 1 1+- YilF(ad%)]p=O (B28) 

p ( x )  = Ae9X + Be-9X 0329) 

where the propagation constant cp may be written 

w 

C 
cp = - [F(a)]-”2 

by using the notation 

The quantity n may be regarded as a complex effective 
polytropic factor for pressure changes in the tube (ref. 4). 

Since cp is a complex constant with positive real part, 
equation (B29) together with equation (7) represents a 
superposition of damped traveling plane waves, one of 
amplitude A traveling in the -xdirection and one of amplitude 
B traveling in the +x-direction. The constants A and B are 
determined by boundary conditions. 

Inserting equation (B29) and its derivative into the 
expressions for v (eq. (B27)), u (eq. (B22)), p (Eq. (B19)), 
and T (eq. (B18)) completes the solution of the problem. 

This has the solution 
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Appendix C 
Transmission-Line Formalism 

Once the general expressions for the pressure wave in a tube 
have been obtained, it remains to calculate the transfer 
properties of particular arrangements of probe tubing and 
transducer cavities. Bergh and Tijdeman (ref. 4) derived a 
workable but cumbersome recursion formula for this purpose. 
Another approach, which is fairly commonly used for one- 
dimensional acoustic waves propagating in ducts, is based on 
equations developed to describe electrical transmission lines. 
Since the transmission-line formalism with its ABCD matrices 
is much more compact and flexible than the Bergh and 
Tijdeman recursion relation of reference 4 (the matrices enable 
one to easily calculate pressure transfer relations for a greater 
variety of combinations of tubing and to evaluate other 
quantities of interest such as input impedances), it seems 
worthwhile to show how the acoustical equations are analogous 
to the transmission-line ones. The acoustical analysis may then 
be carried forward in a form suggested by the formalism 
developed for transmission lines. 

Equations for Electrical Transmission Lines 

Consider a coaxial cable transmission line for definiteness, 
although the same concepts apply to parallel-wire and other 
types of transmission line (ref. 16). Any transmission line is 
characterized by a distributed electric capacitance per unit 
length e, inductance per unit length C, resistance per unit 
length a (including both conductors), and leakage conductance 
per unit length 6 of the gas or other dielectric between the 
conductors (6 Ax is the reciprocal of the inter-conductor 
leakage-resistance in length Ax). If a potential difference 
between the two conductors is set up at one end of the cable, 
charge will start to flow. Let us find differential equations for 
the current i ’ in the central wire and potential V’ of the central 
wire relative to the outer one, as functions of the distance x 
along the wire and of the time. 

As suggested in reference 16, choose an element of the 
transmission line of infinitesimal length Ax for analysis. There 
are four physical relations or quantities of interest: the 
capacitive relation between the voltage V’ and the charge on 
the central wire in Ax, the inductive emf associated with the 
rate of change of the current in Ax, the i ‘R  drop in potential 
along the conductors, and the leakage current between the 
conductors due to conductance through the intervening 
medium. 

The charge q’ on length Ax of the central conductor is 

The rate at which charge leaves Ax, traveling down the 
conductor, differs from the rate at which it enters by an amount 

equal to the leakage current through the dielectric plus the rate 
at which the local capacitance is being charged. That is, 

a4 ’ 
at 

Ai’ = - V’(6hr)  - - 

Substituting from equation (Cl) and dividing by Ax give 

If harmonic time dependence is assumed in the form 

then the first basic transmission-line relation between complex 
amplitudes is 

di 
dx  

- (6 +j&)V = - yv -=  

Here y is the total distributed shunt electric admittance per 
unit length of line. 

The potential drop along Ax is 

(C6) 
ai’ 

AV’ = - i’(6lAx) - ($Ax)-  
at 

Dividing through by Ax and assuming harmonic time de- 
pendence result in the other transmission-line relation: 

dV 
dx (C7) _ -  - - (a +jwC)i = - Zi 

In this equation, Z is the total distributed series electric 
impedance per unit length of the line. 

Analogous Quantities for Acoustic Tubes 

In the natural analogy with an acoustical duct, the excess 
pressure p is associated with the electric potential and the I 
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volume velocity is associated with the electric current. At any 
cross section the volume velocity or flow U is defined as 

where S is the cross-sectional area of the duct carrying the 
wave, and ii is the fluid velocity averaged over the cross 
section. Multiplying the volume velocity by the average fluid 
density gives the mass passing any point per unit time, so that 
conservation of mass can be conveniently expressed directly 
in terms of conservation of volume velocity. 

Notice from equations (B23) and (B24) that 

so by analogy with equation (C7), the total distributed series 
acoustic impedance per unit length of the duct may be said to be 

As a function of a, Z depends on the viscosity but not on the 
thermal conductivity of the gas. The imaginary part of Z/w 
is the distributed inertance of the fluid per unit length, while 
the real part of 2 is the distributed series acoustic resistance 
of the duct per unit length, due to viscous damping. In the 
section Comparison with Flat-Plate Geometry, it is pointed 
out that the expressions for pressure and longitudinal fluid 
velocity waves in a circular duct deduced by Bergh and 
Tijdeman in reference 4 have the same form as the ones derived 
here for parallel flat plates. All the circular duct results may 
be obtained from the ones for parallel flat plates by replacing 
the function F(a) defined in equation (16) by the Bessel 
function ratio J2(a)/J0(a). For that reason, it is possible to 
use the equations of this appendix to analyze either flat plates 
or circular ducts, by letting F(a) refer to the function of 
equation (16) or to the Bessel function ratio, depending on 
the case of interest. In addition, experiments described in this 
report show that, within limits, tubes with other cross-sectional 
shapes may be treated with either flat-plate or circular-tube 
functions if the tube is described in terms of its equivalent 
radius. 

Differenting equation (C9) with respect to x and using 
equation (B28), we find 

- 
Y 

which is the other transmission-line relation for the acoustical 
wave in a duct. The total distributed-shunt acoustic admittance 
per unit length is 

which depends on thermal conductivity but not viscosity. The 
imaginary part of y l w  is the distributed compliance of the fluid 
per unit length, while the real part of y is the reciprocal of 
a resistance describing energy loss to the walls through thermal 
conduction per unit length. 

The two quantities 2 and y define the fundamental physical 
properties of the duct. When multiplied by the appropriate 
length Ax, they give the series impedance and shunt admittance 
of an infinitesimal element of tube-a tube which is very short 
compared to the wavelength of any acoustical disturbance in 
the tube. Since an elastic fluid in a long tube sustains wave 
motion in which a harmonic disturbance at one point is not 
in phase with the disturbance at other locations, 2 and y 
cannot be used to directly find the impedances of a finite length 
of tube. Rather, the two quantities Z and are first used to 
calculate the characteristic impedance and propagation constant 
of the tube. It is then possible to analyze finite tubes with 
various terminations, or combinations of tubes. 

We may proceed as follows: Starting from the transmission- 
line type equations 

dU 
ds 
_ -  - - YP 

(C13a) 

(C13b) 

we differentiate equation (C13a) and substitute equation (C13b) 
to get 

This wave equation for p implies the result of equation (B29), 
with propagation constant 

From equations (C13a) and (C13b) again, the corresponding 
volume velocity wave is 



The combination of 2 and y appearing in the last expression 
also has physical significance. The acoustic impedance of the 
duct at any point is defined as 

Given our expressions for the waves, 

Z Be-vx + Ae9x 

If a wave is introduced at x = 0 into a semi-infinite tube along 
the positive x-axis there will be no reflected wave traveling 
back toward the origin. This implies that A = 0. The 
impedance of the duct under these conditions is independent 
of position and is called the characteristic impedance of the 
duct Z,. Thus 

At any x ,  the relation between Z ( x )  and the characteristic 
impedance of the duct 2, at that point indicates the relative 
amplitude and phase of leftward- and rightward-traveling 
pressure waves in the duct. Rearranging equation (C18) shows 
specifically that the ratio of leftward to rightward wave 
amplitudes is 

Transmission-Line Matrices 

The stipulation of the values of p and its derivative dp/& 
at some point determines a unique solution to the wave 
equation, as the constants A and B in equation (B29) are thereby 
determined. Since the volume velocity U is proportional to 
dpl& (see eq. (C13)), the choice of pressure and volume 
velocity at any point in a duct determines the pressure and 
volume velocity at any other point. That is, the pressure and 
volume velocity at any point in a duct can always be expressed 
as a function which is a linear combination of the pressure 
and volume velocity at a reference point. This fact leads to 
the transmission-line equations and ABCD matrices (ref. 17). 

For example, let the wave amplitudes at x = 0 in a long duct 
be called po and Uo, with the corresponding quantities at 
x = L being pL and U,. From equations (B29) and (C16) we 
obtain 

Equations ((223) and (C24) may be solved for A and B as 

Inserting equations (C25) and (C26) into equations (C21) and 
(C22) yields 

po = pL cosh q L  + ULZc sinh PL (C27) 

1 
U, = p L ~  sinh PL + UL cosh p L  (C28) 

L C  

which may be written as a matrix equation 

Po cosh cpL Zc sinh cpL 

U ]  = I sinh PL cosh (pL 1 
The matrix is called the transmission-line matrix, or the ABCD 
matrix, the latter name coming from expressing the generic 
2 by 2 matrix as 

There is no connection between the name ABCD matrix and 
the A and E in equations (C25) and (C26). 

The transmission-line matrix can easily be used to calculate 
the input impedance of a duct of length L which is closed at 

16 



the far end. The boundary condition is expressed by setting 
U L = O .  Then 

Z, sinh QL 

cosh QL 

and 

The input impedance can be calculated just as easily for an 
arbitrary terminating impedance Z,. The result is 

ZT cosh QL + Z, sinh QL 
Z, sinh QL + Z, cosh QL Zi" = z, K33) 

Other events in the life of a transmission line may also be 
expressed in terms of ABCD matrices including the effects of 
various kind of discontinuties in the line. Suppose that at some 
point in a duct there are several side branches so that not all 
the mass arriving at that point from the upstream duct leaves 
by the downstream duct. Using subscripts u to describe the 
situation just upstream of the discontinuity, d for the 
downstream side of the discontinuity, and 1, 2, 3, . . . for the 
entrances to the side branches, we have 

P u = P d = P l  = p 2 = p 3 =  ... (34) 

and 

u, = u, + u, + u, 4- u3 + ... (C35) 

Expressing U1 in terms of the input impedance to branch 1 ,  
denoted Z,, as 

and expressing the flow into the other branches in a similar 
way, we obtain 

or 

As pointed out again in the section Applications of ABCD 
Matrices to Compound Systems, this matrix is equal to the 
product of several matrices of the same form, one for each 
of the individual side branches. 

A particular side branch could be an actual side tube attached 
to the main duct to monitor the average total pressure, with 
input impedance calculated as above or with other ABCD 
matrices; or the side branch could be a local cavity, some of 
the flow into which pumps up the pressure rather than going 
out the other side. Bergh and Tijdeman (ref. 4) show, in the 
developments leading up to their appendix equation (53), for 
a cavity of volume V containing gas with polytropic constant 
k (value between 1 for an isothermal process and y for an 
adiabatic one) and ddd (dimensionless diaphragm deflection) 
factor a that the relation between the rate at which mass is 
flowing in and out of the volume and the excess pressure is 

d" = j w y  + ;)p 
dt c2  

Since dm/dt can be considered equal to paU, the effective 
input impedance of such a cavity is 

and the appropriate ABCD matrix for such a volume is 

O I  

1 
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P o  "0 r Hole in side 7 7 Entrance I/ 
Many other ABCD matrices can be derived. One can imagine 

a discontinuity in the form of a porous plug in a duct or an 
impervious, flexible membrane with mass, where there is a 
pressure discontinuity but the volume flow is continuous. This 
amounts to a lumped series impedance Z' in the duct, with 
matrix given by 

I 
\ 
I 

i 
/ 

/ 
/ ! 

Closed 
/ end 
/ / 

/ / 
/ 

/ 
/ 

/ 
/ 

/ 

/ 
/ 
L Tu be 5 

\ 
'\ 

\ - Tube 2 'L Cavity 1 

Tube 6 Cavity 3 / 
/ 

L Tube 8 with attached 
tube 4 

Figure 13 .-General compound linear acoustic system. There is actually a small series impedance associated with a 
step change in the radius of a circular duct (ref. 18), which 
can be placed in such a matrix. 

An arbitrary discontinuity can be represented by a com- 
bination of series and shunt impedances. A ~ I  ABCD matrix has 
been written for a section of duct with a conically tapered cross 
section (ref. 17). 

1 0  1 0  1 0 

- 1  1 ] [; l ] = [ ; l + ;  1 ]  
K43) 

Z1 

a compound side branch discontinuity such as a cavity with 
an attached side tube can be represented by either one overall 
matrix or the product of two matrices, one for each of the 
branches at that point. The pressure and volume velocity at 
the left entrance to tube 2 in figure 13 are given by 

matrix for matrix for [E]=[ tube2 ] [ cavity 1 ] [ :] ( C W  

Applications of ABCD Matrices to Compound Systems 

Suppose one wishes to analyze the pressure-transfer 
properties or calculate the input impedance of a system of many 
interconnected parts, such as the general one shown in 
figure 13. All that is required is to write down the ABCD 
matrix for each separate part and then multiply them together. 
Since 

while at the far left entrance to the complete system we have 

ABCD matrices 

It is quite easy to write computer programs to evaluate the 
matrices, multiply them, and print out input impedance 
Zi, = pO/Uo or pressure-transfer function p l / p o .  (Since the 
equations are linear, for these calculations p1 may be set 
equal to an arbitrary constant such as 1.) 

P1tl 

Figure 14.-Acoustic system consisting of cavity with input and output tubes, 
used in derivation of Bergh and Tijdeman recursion relation. 

Derivation of Bergh and Tijdeman Recursion Relation 

While it is much easier to program and use the ABCD 
matrices than the Bergh and Tijdeman recursion relation (ref. 
4), it is a satisfying exercise to derive the recursion relation 
from the matrix formalism and thus show they are equivalent. 
Consider the system of two tubes and a cavity shown in 
figure 14. At the entrance to the tube of length just 
after the cavity of volume Vp, we have from equation (C29) 
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Multiplying this equation out, we find from the first component 

pp = PP+ 1 cash PP+ 1 4 +  1 + ZC,P+ 1 UP+ 1 sinh PP+ &e+ 1 (C47) 

which implies 

PP+ 1 up = - sinh PP+lLP+l 
ZC,P+ 1 

In view of equation (C41), just upstream (left) of the cavity, 
the pressure and volume flow are given by 

and from the second component 

where Up is expressed by equation (C50). 
Inserting equation (C48) into equation (C49) gives as a result When the multiplication in equation ((251) is carried out, 

the pressure-velocity vector at the output of tube P is 

PP 1 

So we finally calculate the pressure at the input of tube P by 
multiplying equation (C52) by the ABCD matrix for a tube 
of length Lp The result is 

Dividing by p p  and rearranging yield 

The second of the three terms summed on the right side of 
the equation can be transformed into the Bergh and Tijdeman 
form by noticing that the last equalities in equations (C12) and 

(C19) imply (when the numerator and denominator are 
multiplied by tube length L) 

(As shown by the fact that it cancels out in equation ((259, 
the characteristic impedance Zc does not properly depend on 
the length of a tube. However, Bergh and Tijdeman apparently 
wish to introduce it so that they can express their results in 
terms of the tube volume V, = SL. Note that in all Bergh and 
Tijdeman expressions, the tube volumes V, are somewhere 
divided by the corresponding tube length L.) Finally, when 
equation (C10) and the next-to-last part of equation (C19) are 
used, the ratio of characteristic impedances in the last term 
is equivalent to 

So, regarding the F function as the ratio of Bessel functions 
.I2/&, we get the Bergh and Tijdeman recursion relation of 
reference 4, which is 
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Examples of its use are found in reference 5 .  
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Appendix D 
Computer Programs 

Circular tube 

Several short FORTRAN routines have been written to apply 
the ABCD matrices to the analysis of probe tubes coupled to 
transducer cavities. The basic package consists of three 
general-purpose subroutines, which are called by a main 
program designed to reflect the structure of the system being 
analyzed. Listings for the subroutines and two sample main 
programs are given at the end of this appendix. 

Subroutine TUBE evaluates the ABCD matrix of equation 
(C29) for a duct of generalized radius G, cross-sectional area 
S, and length L. It uses the formulas from either the circular- 
cylinder or the infinite-plate geometry, depending on whether 
the value of parameter IS is 1 or 2, respectively. The previous 
values of the components of the pressure-volume velocity 
vector are read in as the array PU, they are multiplied by the 
ABCD matrix, and the new vector is returned in the same 
variables. Information about the frequency, thermodynamic 
properties of the fluid, and mathematical constants is provided 
in COMMON blocks which must be initialized in the calling 
program. The propagation constant PHI calculated within 
TUBE is made available to the calling program in another 
COMMON block, to use if desired. 

Function RFUN is used to evaluate either the F of equation 
(B24) or the ratio &/.lo, depending on the value of parameter 
IS. It is called by subroutine TUBE and uses subroutines in 
the NASA Lewis Research Center FORTRAN library to 
compute the Bessel functions. For large arguments the 
common limiting form given in equation (21) is used. 

Subroutine VOL evaluates the ABCD matrix of equation 
(C41) for a small cavity in the line. The cavity is characterized 
by its volume V, ddd factor SIG, and polytropic constant 
POLYK. The appropriate values of POLYK vary from 1.0 
for an isothermal process to 1.4 for an adiabatic one. This 
constant is set equal to 1.0 in the programs of reference 5; 
perhaps a better estimate could be made on the basis of the 
expression for n in equation (J33 1). Subroutine VOL also takes 
in and updates the current pressure-flow vector. 

Two examples of calling programs are provided. The first 
was written to calculate, for frequencies from 25 to 5000 Hz, 
the pressure transfer function of a single tube and closed 
volume system, using both circular- and flat-geometry 
formulas for the tubing. The results are plotted on the same 
axes for comparison. The constants are defined in lines 1300 
through 2300, 2800 through 2900, and 3600 through 3800. 
Dimensions of the tubing are read in by lines 2950 through 
3 190, and the transmission-line calculations are carried out 
at each frequency in the DO-loop in lines 3500 through 4960. 

Flat plates 

The pressure-volume velocity vector for the circular-tubing 
model is the array PUR, while that for the flat-plate model 
is PUF. The remainder of the program plots the results by 
using routines standard at the Lewis Research Center. 
Numerical values for circular geometry computed with this 
program agree with calculations from the programs of 
reference 5 and with graphs in Bergh and Tijdeman (ref. 4). 

The output of this program for sample sections of flat-oval 
tubing leading to a small, closed cavity is shown in figures 
9 through 12. In addition, to help an interested user determine 
that the computer listings have been copied correctly, table I 
gives selected numerical data calculated by this program. 

The second program is an example of how the routines 
would be used to compute the pressure response of an infinite- 
line probe. Once again the calculations are done twice, once 
for each model geometry, and both results are plotted for 
comparison. The sample graphs in figure 15 show how similar 
the results are. 

Amplitude Relative 
ratio phase, 

deg 

8.98 -91.1 
,905 -179.2 

4.46 -261.7 
7.29 -82.6 

,917 -180.3 
3.62 -249.2 

TABLE I.-SAMPLE NUMEIUCAL DATA FROM 
COMPUTER PROGRAM 

Amplitude 
ratio 

8.51 

4.33 
6.82 

.904 

.915 
3.49 

(a) Input Parameters 

Example 

1 
2 
3 
4 
5 
6 

cm3 
cm 

(b) Calculated Output 

Example 

1 
2 
3 
4 
5 
6 

1900 
7.71 2800 

phase, 

-91.1 

-261.7 
-82.6 
- 180.3 
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1 M- 
O--+ Circular-cross-section-tube model 
W - 4  Infinite-flat-plate model 

E 
m 

e:- -a. VI a, L . -- -->-- 
II --aa* 

Frequency. Hz 

(a) Ratio of amplitude of transducer cavity pressure to amplitude of inlet 

(b) Relative phase of transducer cavity pressure and inlet pressure. 

Figure 15.-Caloulated ratio of cavity to inlet pressure and relative phase of two 
pressures as function of frequency for infinite-line probe made from flat-oval 
tubing with g = 0.061 cm and S = 0.0181 1 cm2. Distance from inlet end 
to transducer, 5 cm; distance from transducer to closed end, 100 cm. 

pressure. 

In general, names of variables are intended to suggest their 
significance. Definitions of variables placed in COMMON are 
as follows: 

AMDENS 
AMPRES 

FREQ 
GAMMA 
J 
532 
OMEGA 
PHI 
RHOC 
SPEED 
SRFJRN 
VISC 
WAVENO 

ambient density, pa 

ambient pressure, pa 
ordinary frequency, f 
ratio of specific heats, y = cp/cv 
J-l, j 
j raised to 312 power 
angular frequency, o 
propagation constant, p 

the product pac 

adiabatic speed of sound, c 
square root of Prandtl number, f l r  
coefficient of shear viscosity, p 

free-space wave number, k = w / c  
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Program Listings 

Subroutine TUBE.- 

0000100 
0000200 c 
0 0 0 0 3 0 0  C 
0 0 0 0 ~ t 0 0  c 
0000500 c 
0000600 C 
0000700 C 
0000800 c 
0000900 C 
0001000 c 
0001100 
0 0 0 1 2 0 0  
0 0 0 IC0 0 
0001500 
0001600 
0001700 C 
0001800 
0001900 
0002000 
0 0 0 2 1 0 0  c 
0002200 
0 0 0 2 3 0 0  
0 0 0 2 4 0 0  
0 0 0 2 5 0 0  
0 0 0 2 6 0 0  
0002700 C 
0002000 
0002900 C 
0 0 0 3 0 0 0  C 
00031pJO C 
0003200 C 
COO3300 
0 0 0 3 4 0 0  C 
0 0 0 3 4 5 0  
0 0 0 3 5 0 0  
0 0 0 3 6 0 0  
0 0 0 3 7  00 
0 0 0 3 8 0 0  
0003900 
0 0 0 4 0 0 0  C 
0 0 0 4 1 0  0 
ii 0 05 2 0 0 
0004300 C 
0 0 0 4 4 0 0  
0 0 0 4 5  0 0 
0 0 0 4 6 0 0  
0 0 0 4 7 0 0  
0 0 0480 0 
0 0 0 4 9 0 0  C 
0 0 0 5 0 0 0  
0005100 

SUBROUTINE TUBE(GDS,L,IS,PU) 

SUBROUTINE TO EVALUATE ABCD MATRIX FOR TUBE OF 

2(AREA)/PERIMEYER EQUAL TO G .  THE PRESSURE- 
VOLUME FLOlJ VECTOR PU IS UPDATED. 
IS = 1 --> USE CYLINDRICAL DUCT FORMULAS 
IS = 2 --> USE PARALLEL PLATE FORMULAS 

LENGTH L, CROSS SECTIONAL AREA S I  AND 

COMF'LEX 
COMI'ION /Xf 'REQ/  FREQ8 OPlEGA,WAVENO 
C014PlUH /THERPlO/ GAFIMA, SRPRN, AMPRESD AMDENS? SPEEDDRHOCDVISC 

COMPlON /XCONST/ Jp J32rPI 

Pu(2) D J D J 3 2 ~  PI11 

COIFIIION /XTIJUE/ PHI 

REAL L 
C O w L E X  A B C D ( ~ , ~ ) D P U T E M P ( ~ ) , ~ D ~ ~ , A L , A L P D ~ N D ~ D D ~ E ~ ~ ~  
COMPLEX RFUN 

A L  = J32x(GxSQRT(AMDENSxOMEGA/VISC)) 
ALP = ALKSRPRN 
CN = GAPlMA + (GAMMA - l.)XRFUN(ALP,IS) 
CD = RFUN(ALBIS1 
PHI = WAVENOXCSQRT(CN/CD) 
Z = -JKWAVENOXRHOC/(SxCD) 
CHARACTERISTIC IMPEDANCE = SERIES IMPEDANCEILENGTH / 
PROPAGATION CONSTANT 

zc = Z/PHI 

RETURN 
END 

I 1 PUTEMP(N 
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Function RFUN.- 

0 0 0 1 9 3 0  
GO02900 c 
C G 0 2 1 0 0  
u 0 0 2 2 0 0  c 
0 0 0 2 2 2 0  c 
0 0 0 2 2 ~ 1 0  c 
0 0 3 2 2 6 0  C 
0 0 0 2 2 6 5  
0 6 0 2 2 7 0  
0 0 0 2 2 7 5  
OG02280 
0 0 0 2 2 8 5  C 
0 0 0 2 3 0 0  
o o o 2 ' t o o  c 
00025flo 
0 0 0 2 6 0  0 
0 0 0 2 7 0 0  C 
0 0 0 2 8 0 0  C 
ooo29co c 
0 0 0 3 0 0 0  C 
0 0 0 3 1 0 0  
0 0 0 3 2 0 0  
0 0 0 3 3 0 0  
0 0 0 3 4 0  0 
0 0 0 3 5 0 0  
0 0 0 3 6 0 0  
0 0 0 3 7 0 0  
C O O 3 9 0 0  
0004000 
0 0 0 4 1 0 0  c 
0 0 0 4 2 0 0  
0 0 0 4 3 0 0  
0 0 0 4 5 0 0 
0 0 0 4 6 0 0  C 
0 0 0 4 7 0 0 
0 0 0 tt 8 0 0 
0 0 0 4 9 0 0  C 
0 0 0 5 0 0 0  
0 0 0 5 1 0 0  C 
0 0 0 5 2 0 0  
0 0 0 5 3 0 0  
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COMPLEX FUNCTIO14 R F U N ( 2 , I S )  

COPlPL EX 2, JO , J1, J2,YO ,Y1, N, D, B 

IS = 1 --> EVALUATES J2(Z)/JO(Z) 
IS = 2 --> EVALUATES ( T A N ( Z / 2 ) / ( 2 / 2 ) )  - 1. 

A R E A L C Z )  
C = A I P l A G ( Z )  
IF ( A  .EQ. 0 . 0  .AND. C .EQ. 0 . 0 )  GO TO 3 
IF ( A D S ( C )  . G E .  140.1 GO TO Ct 

GO TO (1, 2 ) t I S  

1 CALL Z B E S J Y ( Z , J O ~ J l , Y O , Y l )  
J 2  = CM?LX(2.ODO.O) * J l / Z  - JO 

SCALE NUMBERS BEFORE D I V I D I N G  TO 
AVOID EXPONENT OVERFL Old 

A R O  = R E A L ( J 0 )  
A 1 0  = A I M A G ( J 0 )  
A R 2  = R E A L ( J 2 )  
A12 = A I M A G ( J 2 )  
A = A M A X l ( A B S ( A R O ) , A B S ( A I O ) ~ A B S ( A R 2 ) r A D S ( A I 2 ) )  
N = CPlPLX(AR2/A, A I 2 I A )  
D CPIPLX(ARO/Ap AIO/A) 
RFUN = N / D  
GO TO 5 

2 B Z / C M P L X ( 2 . 0 , 0 . 0 )  
RFUN = C S I N ( B ) / ( B ~ C C O S ( D ) )  - CMPLX(1.0,O.O) 
GO TO 5 

3 RFUN = CMPLX(O.,O.) 
GO TO 5 

4 RFUN = CMPLX(- - l . ,O. )  + CMPLXCO.,P.)/Z 

5 RETURN 
END 



Subroutine V0L.- 

0000100 
0000200 c 
0000300 C 
0000400 c 
0000500 C 
0000400 C 
0000700 C 
0000720 C 
0000740 C 
0000800 C 
0000900 
0001000 
0001200 
0 0 0 1 r t 0 0  
0 0 0 1 5 0 0  C 
0 0 0 1 6 0 0  
0 0 0 1 7 0 0  C 
0 0 0 1 8 0 0  
0001900 
0002000 
0002100 
0 0 0 2 2 0 0  c 
0002300 
0 0 0 2ft 0 0 
0002500 C 
00 0 2 6  0 0 
0 0 0 2 7 0 0  
000280 0 
0002900 
0003000 
0003100 C 

0003300 

I 
i 

I 

I 0003200 
I 

SUBROUTINE VOL(V,SIG,POLYK,PU) 

SUBROUTINE TO EVALUATE ABCD MATRIX FOR A LUMPED 
VOLUME V. PARAMETER S I G  IS THE DIMENSIONLESS 
INCREASE IN TRANSDUCER VOLUME DUE Y O  DIAPHRAGM 

POLYTROPIC CONSTANT FOR T H E  VOLUME ( S E E  B & T I .  
T H E  PRESSURE-VOLUME VELOCITY VECTOR P U  IS 
UP DA 'I ED . 
DEFLECTION WITH PRESSURE, A N D  POLYK IS T H E  

c o w  L EX PIJ ( 2 1 . J , J 3 2  
COMMON /XI'REQ/ FKEQ, OMEGA r WAVENO 
COFlMON /YHEKMO/ GAMMA,SRPKN,AMPRES,AMDENS~SPEED~RHOCrVISC 
COPlMON /XCONST/ J, J32,PI 

c o w  L EX PIJ ( 2 1 . J , J 3 2  
COMMON /XI'REQ/ FKEQ, OMEGA r WAVENO 
COFlMON /YHEKMO/ GAMMA,SRPKN,AMPRES,AMDENS~SPEED~RHOCrVISC 
COPlMON /XCONST/ J, J32,PI 

AE)CD(2,2) = ADCD(lr1) 

ABCD(2,l) = J*(WAVENO*GAMMANVX(SIG + l./POLYK)/RHOCI 
ABCD(1.2) = CMPLX(O.,O.) 

D O l M = l r 2  
1 PUTEMP(M1 = PU(M) 

DO 3 M = 1 ,  2 
PU(M) = CMPLX(O.,O.) 
D O 2 N = 1 ,  2 

2 PU(M) = PUCM) + ABCD(M,N) PUYEMP(N1 
3 CONTINUE 

RETURN 
END 



Progmm toplot comparison of circuiiuandfla#ened tubes.- 

0 0 0 0 1 0 0  c 
0 0 0 0 2 0 0  c 
OOG0300 C 
0 0 0 0 4 5 0  C 
0 0 0 0 5 0 0  C 
0 0 0 0 6 0 0  
0 0 0 0 7 0 0  
0 0 0 0 9 0 0  
0 0 0 1 0 0 0  
0 0 0 1 1 0 0  
0 0 0 1 2 0 0  c 
0 0 0 1 3 0 0  
0 0 0 1 4 0 0  
0 0 0 1 5 0 0  
0 0 0 1 6 0 0  C 
0 0 0 1 7 0 0  
0 0 0 1 8 0 0  
0 0 0 1 9 0 0  
0 0 0 1  9 2 5  
0 0 0 1 9 5 0  
0 0 0 2 0 0 0  
0 0 0 2 1 0 0  
0 0 0 2 2 0 0  
0 0 0 2 3 0  0 
@ 0 0 2 1 0 0  c 
3 0 0 2 5 0 0  
0 0 0 2 5 2 0  
0 0 0 2 5 3 0  
0 0 0 2 5 4 0 
0 0 0 2 5 6  0 
0 0 02580 
GO02600  C 
0 0 0 2 8 0 0  
0 0 0 2 9 0 0  
0 0 0 2 9 3 0  C 
0 0 0 2 9 5 0  
0 0 0 2 9 7 0  
0 0 0 2 9 9 0  
0 0 0 3 0 1 0  
0 0 0 3 0 3 0  
0 0 0 3 0 5 0  
COO3070 
0 0 0 3 0 9 0  
0 0 0 3 1 1 0  
0 0 0 3 1 3 0  
0 0 0 3 1 5 0  
0 0 0 3 1 7 0  
0 0 0 3 1 9 0  
0 0 0 3 3 1 0  C 
0 0 0 3 4 2 0  
0 0 0 3 4 4 0  
0 0 0 3 4 6 0  C 
0 0 0 3 5 0 0  
0 0 0 3 6 0 0  
0 0 0 3 6 5 0  
0 0 0 3 7 0 0  
0 0 0 3 8 0  0 
0 0 0 3 9 0 0  C 
0 0 0 4 0 0 0  
0 0 0 4 1 0 0  
0004200 
0 0 0 4 2 2 0  
0 0 0 4 2 4 0  
0 0 0 4 3 0 0  
0 0 0 4 3 5 0  
0 0 0 4 4 0 0  C 
0 0 0 4 5 0 0  
0 0 0 4 6 0 0  
0 0 0 4 6 5 0  
0 0 0 4 7 0 0  
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PROGRAM TO PLOT COMPARISON OF C I R C U L A R  AND 

T R A ti SN I S S I O N  L I N  E FO RM.4 L I SM . 
CGS U N I T S  USED THROUGHOUT. 

FLATTEHED TUBES, CALCULATIONS USE 

COMPLEX J D J 3 2 , P H I  
COMMON /XFREQ/ FREQ,OMEGA,WAVENO 
COFlPlON /THERMO/ GAMMA,SRPRN,AMPRES, AMDENS,SPEED,RHOC,VISC 
COMMON /XTUBE/  P H I  
COMFlON /XCONST/ J, J 3 2 , P I  

P I  = 3 . 1 4 1 5 9 3  
J = C f l P L X ( O . , l . )  
J 3 2  = C E X P ( C M P L X ( O . r O . 7 5 X P I I )  

GAMMA = 1 . 4 0 1 7  
SRPRN = 0 . 8 4 1 4  
ATM = 1 . 0 1 2 9 E 6  
APIPRES = ATM 
TEMPC = 2 6 . 8 5  
APIDENS = AMPRES/C2.8688E6*(TEMPC+273.15) 1 
SPEED = SQRT (GAMMA~AMPRES/APlDENS) 
RHOC = Al lDENS * SPEED 
V I S C  = 1 . 8 4 6 E - 4  

COMPLEX PRATIO,PUR(2 ) ,PUF(2 )  
REAL X F ( 2 0 0 ) ~ A R ( 2 0 0 ) ~ A F ~ 2 O O ~ ~ P R ( 2 0 0 ~ ~ P F ~ 2 0 0 ~  

REAL XTIT(3)/'FREQ','UENC'p'Y ' 1  
R E A L  Y T I T 1 ( 4 ) / ' A P l P L ' , ' I T U D ' , ' ~  R A ' P ' T I O  ' 1  
REAL Y T I T 2 ( 2 ) / ' P H A S ' , ' E  ' 1  

INTEGER I V A R S ( 1 0 )  

S I G  = 0 .  
POLYK = 1.2 

3 WRITE ( 6 1  1) 
1 FORMAT (1' ENTER C A V I T Y  VOLUME') 

2 FORMAT ( G 1 0 )  
READ (5, 2, END=20)  V 

LJRITE ( 6 1  c t )  

READ (5, 2, END=20)  G 
WRITE ( 6 ,  6 )  

4 FORMAT 0' ENTER GENERALIZED R A D I U S  OF DUCT' )  

6 FORPlAT C / '  ENTER CROSS-SECTIONAL AREA OF DUCT ' )  
READ (5, 2 ,  END=20)  S 
WRITE (6, 7 )  

READ ( 5 ,  2, E N D = 2 0 )  XLEN 
7 FORMAT (1' ENTER LENGTH OF DUCT' )  

RMX = 0 .  
NPTS = 2 0 0  

DO 1 0  K F  = 1, NPTS 
FREQ = F L O A T ( 2 5 * K F )  
X F ( K F )  = FREQ 
OMEGA = 2. P I  X FREQ 
WAVENO = OMEGA/SPEED 

PUR(1 )  = CMPLX( l . ,O. )  
P U R ( 2 )  = CMPLX(O.,O.) 
CALL VOL(V,SIG,POLYK,PUR) 
P U F ( 1 )  = P U R ( 1 )  
P U F ( 2 )  = PURCZ) 
CALL T U 0  E(  G , S t XL EN, 1, PUR 1 
CALL TUDE(GtSDXLEN,Z,PUF)  

PRATIO = CMPLX( 1 ., 0 .  ) /PUR(  1) 
ARCKF) = C A B S ( P R A T I 0 )  
RPiX = APlAXl (RMX,AR(KF)  1 
PHA = ATAN2(AIMAG(PRATIO)~REAL(PRATIO~~~l8O./PI 



I 
I 
I 

i 

I 
I 

I 

I 

t 

I 

0 0 0 4 8 0 0  
0 0 0 4 8 5  0 
0 0 0 4 9 0 0  C 
0 0 0 (t 9 1 C 
0 0 0 4 9 2 0  
0 0 0 4 9 3 0  
0 0 0 4 9 4 0  
0 0 0 4 9 5 0  
0 0 0 4 9 6 0  1 0  
0 0 0 4 9 7 0  C 
0 0 0 4  9 7 3  
0 0 0 4 9 7 6  
0 0 0 4 9 7  9 
0 0 0 4  5 8 2  
0 0 0 4 9 8 5  
0 0 0 4 9 8 8  
0 0 0 4 9 9 1  
0 0 04994 
0 0 0 4 9 9 7  
0 0 0 5 0 0 0  
0 0 0 5 0 0 3  
0 0 0 5 0 0 6  C 
0 0 0 5 0 0 9  
0 0 0 5 0 1 2  
0 0 0 5 0 1 5  
0 0 0 5 0 1 8  C 
0 0 0 5 0 2 1  
0 0 0 5 0 2 4  
0 0 0 5 0 2 7  
0 0 0 5 0 3 0  
0 0 0 5 0 3 3  
0 0 0 5 0 3 6  C 
0 0 0 5 0 3 9  
0 0 0 5 0 4 2  
0 0 0 5 0 4 5  
0 0 0 5 0 4 8  
0 0 0 5 0 5 1  
0 0 0 5 0 5 4  C 
0 0 0 5 0 5 7  
0 3 0 5 0 6 0  
0 0 0 5 0 6 3  
0 0 0 5 0 6 6  C 
0 0 0 5 0 6 9  
0 0 0 5 0 7 2  
0 0 0 5 0 7 5  
0 0 0 5 2 0 0  C 
0 0 0 5 2 2 0  
0 0 0 5 2 4 0  C 
0 0 0 5 2 6 0  20 
0 0 0 5 3 0 0  
0 0 0 5 4 0 0  

I F  (PHA .GT. 0.1 PHA = PHA - 3 6 0 .  
PRCKF)  = PHA 

P R A T I O  = C M P L X ( l . , O . ) / P U F ( l )  

RMX = AMAXl (R i ' lX ,AF(KF) )  
PHA = ATAN2(AIMAG(PRATIO)~REAL(PRATIO~~~l8O./PI 
AFCKF)  = C A B S ( P R A T I 0 )  

I F  (PHA .GT. 0 . 1  PHA = PHA - 3 6 0 .  
P F C K F )  = PHA 

I V A R S C 1 )  = 8 
I V A R S ( 2 )  = N P T S  
I V A R S ( 3 )  = 6 6  
I V A R S t 4 )  = 6 2  
I V A R S ( 5 )  = NPTS - 1 
I V A R S ( 6 )  = 25 
I V A R S ( 7 )  = 0 
I V A R S ( 8 )  = NPTS 
C A L L  GINTVL(O. ,RMX, lO ,1 ,AMIN,AMAX)  
C A L L  G I N T V L ( O ~ r 5 0 0 0 ~ ~ 1 0 ~ 0 ~ A P l I N , A M A X )  
C A L L  GPLOT(XF,AR, IVARS)  

I V A R S ( 3 )  = 98 
I V A R S ( ( 0  = 6 5  
C A L L  G P L O T ( X F P A F t 1 V A R S )  

C A L L  T I T L E ( ~ J ~ ~ ~ ~ , X T I T )  
C A L L  T I T L E ( 3 , 1 5 , 1 5 r Y T I T l )  
C A L L  CORNER(1)  
C A L L  C O P Y ( 1 )  
C A L L  D I S P L A ( 1 )  

I V A R S ( 3 )  = 6 6  
I V A R S ( 4 )  = 6 2  
C A L L  G I N T V L ( - ~ ~ O . , O . , ~ ~ J ~ , A M ~ N , A M A X )  
C A L L  G I N T V L ( 0 ~ ~ 5 0 0 0 . r l O ~ O 1 A M I N ~ A M A X ~  
CALL G P L O T ( X F I P R ~ I V A R S )  

I V A R S ( 3 )  = 9 8  
I V A R S ( 4 )  = 6 5  
C A L L  G P L O T ( X F , P F t I V A R S )  

C A L L  T I T L E ( 4 , 9 , 1 5 , X T I T )  
C A L L  T I T L E ( 3 r 5 r l 5 r Y T I T Z )  
C A L L  D I S P L A t 1 )  

G O  TO 3 

C A L L  TERM 
STOP 
END 
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Program to plot response of infinite line systems.- 

0 0 3 0 1 0 0  c 
0 0 0 0 2 0 0  c 
0 0 0 0 3 0 0  C 
0 0 0 0 4 0 0  
0 0 0 3 5 0 0  
0 0 0 0 6 0 0  
0 0 0 0 7 0 0  
0 0  0 0 8 0 0  
0 0 0 0 9 0 0  C 
0 0 0 1 0 0 0  
0 0 0 1 1 0 0  
0 0 0 1 2 0 0  
0 0 0 1 3 0 0  C 
0 0 0 1 4 0 0  
0 0 0 1 5 0 0  
0 0 0 1 6 0 0  
0 0 0 1 7 0 0  
0 0 0 1 8 0 0  
0 0 0 1 9 0 0  
0002000 
0 0 0 2 1 0 0  
0 0 0 2 2 0 0  
0 0 0 2 3 0 0  C 
0 0 0 2 4 0 0  
0 0 0 2 4 5 0  
0002500 
0 0 0 2 6 0 0  
0 0 027 0 0 
0 0 0 2 8 0 0  
0 0 0 2 9 0 0  
0003000 C 
0 0 0 3 1 0 0  
0 0 0 320 0 
0 0 0 3 3 0 0  C 
0 0 0 3 4 0 0  
0 0 0 2 5 0 0  
0 0 0 3 6 0 0  
0 0 0 3 7 0 0  
0 0 0  380 0 
0 0 0 3 9 0 0  
0 0 0 4 0 0 0  
0 0 0 4 1 0 0  
0 0 0 4 2 0 0  
0 0 0 4 3 0 0  
0 0 0 4 4 0 0  
0 0 0 4 5 0 0  
0 0 0 4 6 0 0  
0 0 0 4 7 0 0  C 
0004800 
0 0 0 4 9 0  0 
0 0 0 5 0 0 0  C 
0 0 0 5 1 0 0  
oco52oo 
0 0 0 5 3 0 0  
0 0  05400 
0 0 0 5 5 C G  
0 0 0 5 6 0 0  C 
0 0 0 5 7 0 0  
0 0 0 5 8 0 0  
0 0 0 5 9 0 0  
0 0 0 6 0 0 0  
U 0 0 6 1 0 0  C 
0 0 0 6 2 0 0  
0 0 0 6 3 0 0  
0 0 0 6 4 0 0  C 
0 0 0 6 5 0 0  
0 0 0 6 6 0 0  
0 0 0 6 7 0 0  C 
0 0 0 6 8 0 0  
0 0 0 6 9 0 0  
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PROGRAM TO PLOT RESPONSE OF I N F I N I T E  L I N E  
SYSTEMS. 

COPlPL EX 
COMMON /XFREQ/ FREQ,OMEGA,WAVENO 
COMMON /THERFlO/ G A M M A , S R P R N , A M P R E S , A M D E N S I S P E E D I R H O C n V I S C  

J , 5 3 2  , P H I  

COMMON /XTUBE/  P H I  
COMMON /XCONST/ J , J 3 2 , P I  

P I  = 3 . 1 4 1 5 9 3  
J CP lPLX(O. ,1 . )  
J 3 2  = C EXP ( CMP L X  ( 0.8 0 .75*P I 1 1 

GAMMA = 1 . 4 0 1 7  
SRPRN = 0 . 8 4 1 4  
ATM = 1 . 0 1 2 9 E 6  
AMPRES = ATM 
TEMPC = 26.85 
AMDENS = AMPRES/(2.8688E6X(TENPC+273.15)) 
SPEED = SQRT(GAMMAXAMPRES/AMDENS) 
RHOC = AMDENS SPEED 
V I S C  = 1 . 8 4 6 E - 4  

COMP L EX 
COMPLEX PREFRSPREFF 
REAL X F ~ 2 0 0 ~ ~ A R ~ 2 0 0 ~ ~ A F ~ 2 0 0 ~ ~ P R ~ 2 0 0 ~ ~ P F ~ 2 0 0 ~  

REAL X T I T ( 3 ) / ’ F R E Q ’  , ‘UENC’ , ‘ Y  ‘1 
REAL YTIT1(4)/’AMPL’,’ITUD1,’E R A ’ P ’ T I O  ’/ 
REAL Y T I T 2 ( 2 ) / ’ P H A S ’ r ’ E  ’1  

P R AT I O  PUR ( 2 1 s PU F ( 2 1 

INTEGER I V A R S ( 1 0 )  

S I G  = 0 .  
POLYK = 1 .2  

3 WRITE (6, 1) 
1 FORMAT (1’ ENTER D I S T A N C E  F R O M  SENSOR TO OUTLET ’ )  

2 FORMAT ( G 1 0 )  
READ ( 5 ,  2, E N D = 2 0 )  X L 1  

WRITE (6, 4) 

READ (59 2. ENDZ20)  G 
4 FORNAT ( / ’  ENTER GENERALIZED R A D I U S  OF DUCT’)  

WRITE ( 6 ,  6 )  
6 FORMAT ( / ’  ENTER CROSS-SECTIONAL AREA OF DUCT’)  

READ (5, 2 ,  E N D = 2 0 )  S 
WRITE ( 6 ,  7 )  

READ ( 5 ,  2, E N D = 2 0 )  XL.2 
7 FORMAT (1’ ENTER LENGTH OF I N F I N I T E  TUBE’ )  

RMX = 0 .  
NPTS = 2 0 0  

DO 1 0  K F  = I, NPTS 
FREQ = F L O A T ( 2 5 H K F )  
XFCKF) = FREQ 
OMEGA = 2. * P I  * FREQ 
NAVENO = OMEGA/SPEED 

P U R ( 1 )  = CMPLX(1.OE-6, 0.1 
P U R ( 2 )  = CKPLX(O.,O.)  
P U F ( 1 )  = P U R ( 1 )  
P U F ( 2 )  = P U R ( 2 )  

CALL TUBE( G , S , XL 2 , l  , PUR 1 
CALL TUUE(G,S ,XLZ ,Z ,PUF)  

PREFR = P U R ( 1 )  
PKEFF = P U F ( 1 )  

CALL T U B E ( G , S , X L l , l , P U R I  
CALL T U B E ( G , S t X L 1 , 2 , P U f r )  



0007000 C 
0007100 PRATIO = PREFR/PUR(l) 
0007200 ARCKF) = CABS(PRATI0) 
0007300 RflX = AMAXl(RMX,AR(KF)) 
0 0074 0 0 PHA = ATAN2(AIMAG(PRATIO)~REAL(PRATIOl~~l8O.~PI 
0007500 IF (PHA .GT. 0.1 PHA = PHA - 360. 
0007600 PRCKF) = PHA 
0007700 
0007800 
0007900 
0008000 
0008100 
0 0 08200 
0008300 
00 084 0 0 
0008500 
0008600 
0008700 
0 0 0880 0 
0008900 
0009000 
0009100 
0 0 0 9200 
0009300 
0009400 
0009500 
0009600 
0009700 
0009800 
0009900 

C 
PRATIO = PREFF/PUF(l) 
AF(KF1 = CABS(PRATIO1 
RWX = AMAXl(RMX,AF(KF)) 
PHA = ATAN2(AIISAG(PRATIO)~REAL(PRATIO))~180./PI 
IF (PHA .GT. 0.1 PHA = PHA - 360. 

10 PFCKF) = PHA 
IVARS(1) = 8 
IVARS(21 = NPTS 
IVARS(3) = 66 
IVARS(4) = 62 
IVARS(5) = NPTS - 1 
IVARS(6) = 25 
IVARS(7) = 0 
IVARS(8) = NPTS 

C 

CALL GINTVL(O.,RMX,lO~l,AMIN~ANAX) 
CALL G I N T V L ( O ~ ~ 5 0 0 0 ~ ~ l O ~ O ~ A N I N ~ A M A X ~  
CALL GPLOT(XF,AR,IVARS) 

C 
IVARS(3) = 98 
IVARSf.4) = 65 
CALL GPLOT(XF,AF,IVARS) 

0010000 c 
0010100 CALL TITLE(4,9,15,XTIT) 
0010200 CALL TITLE(3,15rl5,YTITl) 
0010300 CALL CORNER(1) 
0010(100 CALL COPY(1) 
00 10500 CALL DISPLA(1) 
0010600 C 
0010700 IVARS(3) = 66 
0010800 IVARS(4) = 6 2  
0010900 CALL GINTVL(-360.,0.,10,1~AMIN~AMAX) 
0011000 C A L L  G I N T V L ( 0 . ~ 5 0 0 0 . ~ 1 0 ~ 0 I A M I N ~ A M A X )  
0011100 CALL GP LOT (XF, PR, IVARS 1 
0011200 c 
0011300 IVARS(3) = 98 
0011400 IVARS(4) = 65 
0011500 C A L L  ~ GPLOT(XF,PF, IVARSI 
0011600 C 
0011700 CALL TITLE(4,9,15tXTIT) 
0011800 CALL TITLE(3,5,15,YTIT2) 
0011900 CALL DLSPLA(1) 
0012000 c 
0012100 GO TO 3 
0012200 c 
GO12300 2 0  CALL TERM 
0012'100 STOP 
001 2500 END 
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